skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "A. Akhiyat and J.L. Volakis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—The efficiency of Electro-Optic Modulators (EOM) is directly related to how the rf signal is imposed onto the optical signal. Other factors affecting this efficiency are: the selected architecture and the Electro-Optic materials responsible for modulation through the Electro-Optic Effect. In this paper we demonstrate a millimeter wave antenna integrated EOM that operates at 94 GHz. To improve efficiency, the antenna is integrated directly onto the active region of the electro-optic effect based EOM. Notably, conventional antennas had to be modified to achieve a feed port that is best suited for the selected EOM architecture. For the antenna design optimization, we devised a design procedure that is more suitable for these type of devices. We proposed a design methodology that insures an optimum Field Enhancement (FE) that is responsible for modulation. A novel overall EOM architecture that promotes increased efficiency that makes use of the inherently lossy EO material only where needed in the optical link by making use of an adiabatic transition from a passive Optical waveguide to active portion of the optical link. 
    more » « less